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Introduction 
A vector-based description of a Fully Connected Neural Network will be presented to provide a solid and 

easy to understand mathematical foundation.  By using some simple Linear Algebra, complicated 

summation equations can be avoided, making the mathematics much cleaner and clearer.  This is 

important because the mathematical underpinnings of a Fully Connected Neural Network form the basis 

for other kinds of connectionist networks such as Convolutional Neural Networks.  Neural Networks 

have free parameters that must be solved for which is referred to as training.  The kind of training that 

will be discussed is based on having a set of input data with associated expected results.  This is known 

as Structured Learning.  Network parameters are adjusted in an attempt to produce the expected results 

relative to associated inputs.  To know how to make the adjustments, a function called a Loss function 

(a.k.a. Cost function or Objective function) is devised to measure the network output error and 

adjustments are made to the network parameters in an effort to minimize the error.  This paper will 

focus on the Gradient Descent method to minimize the Loss function and a simple study of a Loss 

function Error Surface is conducted to give an appreciation for how the method works.  To apply 

Gradient Descent the Error Surface gradient is needed, and to determine that value the Back-

Propagation method will be used.  The Back-Propagation method will be derived from the vector-based 

network equation. 

There is a companion C++ library that mirrors closely the structure of the mathematics described in this 

paper.  It is called the SimpleNet library as it is written to be easily readable and extensible.  The paper 

examines the implementation accuracy of the library, and its structure is discussed, but the paper is not 

about the SimpleNet library.  It is available to you and documentation for it is provide in an appendix if 

you are interested, but the paper stands on its own. 

The target audience for this paper is the person interested in the underlying mathematics of Neural 

Networks.  To fully benefit from the paper a reader should at least be familiar with basic linear algebra 

and differential  calculus.  Regarding the former, knowing how to multiply a matrix by a vector is 

enough.  Regarding the later, if you know, or once knew what a function derivative is, that should be 

enough to follow along. 

Mathematical Concepts, Nomenclature, and Conventions 
The mathematical concepts of Neural Networks are not complex but require strict and consistent 

application of basic mathematical principles.  At times I will utilize nomenclature that is unique to this 

paper in an attempt to suppress ambiguity in the underlaying principle.  In this section I will describe the 

concepts needed to develop the mathematics of Neural Networks. 
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Linear Algebra Concepts: 
This may seem rudimentary, but it is important to agree on every detail and convention to understand 

how to construct a Neural Network solver.  In this section we will review some basic concepts of linear 

algebra to establish conventions that might be ambiguous to the reader if left unaddressed. 

Matrix: 
A matrix is a set of numbers arranged in a block.  In this paper Rows indicate the number of horizontal 

rows and Columns indicate the number of (vertical) columns.  The matrix below has 3 rows and 4 

columns.  We will always refer to rows first and columns second  (rows x columns).  The matrix below is 3 

x 4, read “three by four”.  A bold font will be applied to a variable to indicate that it is a matrix.   

*

Columns

Rows

 

A matrix element is identified by its’ row position, then its’ column position.  In the figure above, the 

element with the star is element (2,3) using a unit offset convention.  When coding these algorithms, a 

zero offset convention might be needed.  The point here is that we refer to the element position by row 

and then column. 

Column Vector: 
A Column Vector has 1 column and R rows.  It is just a matrix with one column.  The Column 

Vector to the left is a 3 x 1 Column Vector.  

A Column Vector Variable is denoted with a Right Arrow Accent 

We will use the right Arrow accent over a variable to indicate that it is a Column Vector.  If a variable is 

simply called a Vector, we will assume that it is a Column Vector.  For example, the vector X is written 𝑋⃗. 

Row Vector: 
A Row Vector is a matrix with 1 row and C columns.  The Row Vector to the left is 1 x 

4.  The transpose operator (T) turns a Column vector into a Row Vector.  For example,  

𝑋⃗𝑇 is a Row vector. 

A Row Vector Variable is denoted with a Left Arrow Accent 

Applying the transpose operator to a Column vector is a cumbersome way to indicate that a variable is a 

Row vector, and it can lead to inconsistencies when coupled with more complex mathematical 

operations.  We need a way to just say: “this is a Row vector”.  In this paper we will use the left Arrow 

accent to indicate that a variable is a Row vector.  For example, the Row vector Y is written 𝑌⃖ .  

Basic Matrix Multiplication Rules 
When performing matrix multiplication keep this rule in mind, the column number of the first operand 

must be equal to the row number of the second operand.  When multiplied, the row number of the first 

operand is combined with the column number of the second operand to yield the shape of the result. 
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There are two matrix multiplication operations you must understand for the following mathematical 

development. 

The first is a Row Vector times a Matrix.   

Example: 

     (1 x 3)             x                  (3 x 4)                 =               (1 x 4) 

x =

 

 

 

 

Example of an invalid operation: 

The following operation is not valid. 

 

          (1 x 4)                x                (3 x 4)                  

x

 

 

The other operation we will use is a Matrix times a Column Vector. 

Example: 

          (3 x 4)                 x             (4 x 1)         =     (3 x 1) 

x =

 

Function Conventions 
Here we will establish the nomenclature for analytic functions used in this paper.  

A scalar function 𝑓 with vector input is designated 𝑓(𝑋⃗).  The function 𝑓 takes a vector as input and 

returns a scalar value. 

These dimensions are not 

equal!  The operation is invalid. 



4 
 

A vector function 𝑓 with vector input is designated 𝑓(𝑋⃗).  The function 𝑓 takes a vector as input and 

returns a vector value. 

The Gradient of a Scalar Function 

Recall from vector calculus that the gradient of a function such as 𝑓(𝑋⃗) points in the direction where 

𝑓(𝑋⃗) is increasing most significantly.  The gradient is computed by application of the Grad operator, 

commonly designated by a special character called Del and denoted by an upside-down delta ( ∇ ) (1).  

The Del operator in its most generic from is given by: 

∇ = 𝑒̂1

𝜕

𝜕𝑥1

+ 𝑒̂2

𝜕

𝜕𝑥2

+ ⋯ + 𝑒̂𝑁

𝜕

𝜕𝑥𝑁

 

where N is the space of the independent variable (ℝ𝑁), and 𝑒̂𝑖 are the axes of ℝ𝑁.  In ℝ3 , 𝑒̂𝑖 denote the 

X, Y, and Z axes.  The Del operator can be written more compactly by placing the axes of the space in the 

hyper-vector 𝑒, and the partial derivative operators in the Row vector (
𝜕

𝜕𝑋 ⃗
)

 ⃖        
 .  A hyper-vector is a vector 

with elements that are themselves a vector or even a matrix and I make this distinction to account for 

the fact that 𝑒̂𝑖 is a unit vector (2).    If the thought of a hyper-vector is causing you concern do not worry 

as it will not be around for long.  Using it allows us to write: 

∇ = (
𝜕

𝜕𝑋  ⃗
)

 ⃖       
𝑒⃗ . 

Using the compact form of Del, the gradient of 𝑓(𝑋⃗) where 𝑋⃗ ∈ ℝ𝑁,  is given by: 

∇𝑓(𝑋  ⃗ ) = (
𝜕𝑓

𝜕𝑋  ⃗
)

 ⃖       
𝑒⃗ = 𝑒̂1

𝜕𝑓

𝜕𝑥1
+ 𝑒̂2

𝜕𝑓

𝜕𝑥2
+ ⋯ + 𝑒̂𝑁

𝜕𝑓

𝜕𝑥𝑁
 . 

In this paper I will call a term such as (
𝜕𝑓

𝜕𝑋 ⃗
)

 ⃖        
, the Gradient Vector of f, to distinguish it as a separate 

operation that is part of the gradient computation.  There is some ambiguity in the literature about the 

resultant form of the Gradient Vector.  Some authors show the result as a Column vector, others apply 

the transpose operator to a Column vector, and some authors specifically say that the result is a Row 

vector.  As you will see, the choice of Row vector dovetails naturally with the computation of the 

Jacobian matrix which we will discuss in the next section.   

In this paper the Del operator will sometimes be written with a vector variable subscript to designate 

which independent vector variable the Del operator pertains to.  When applied to a scalar function with 

one vector input it is not needed, but in the mathematics that follow, we will be dealing with scalar 

functions with multiple vector inputs and in this case the Del subscript notation is helpful.  For example, 

consider a function of the vectors 𝑋⃗ and 𝑊   ⃗  , given by 𝑓(𝑋⃗, 𝑊   ⃗ ), where we are interested in the gradient 

with respect to 𝑊   ⃗ .  This is written as ∇𝑊   ⃗  𝑓(𝑋⃗, 𝑊   ⃗ ). 
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To help make it clear what the Del operator does, consider this example, if 𝑓(𝑋⃗) defines the surface of a 

mountain, and 𝑋⃗0 denotes the place 

you are standing on the mountain, 

∇𝑓(𝑋⃗0) points in the direction of 

steepest assent relative to your 

position.  Note that in the mountain 

analogy, the gradient of 𝑓(𝑋⃗) doesn’t 

point up the mountain, it points into 

the mountain in the direction you 

should travel to go up the fastest, 

meaning gain the most elevation in the 

fewest steps.  When I am hiking on a 

mountain this is the direction I usually 

avoid! 

 

In the section above you may have noticed the word “vector” used quite a bit.  The Del operator 

produces a vector when it is applied to a scalar function and each element of the resulting vector is 

accompanied by an axis direction 𝑒̂𝑖.  Yet input variables such as 𝑋⃗ and 𝑊   ⃗  are called vectors, or more 

precisely, Column vectors, without such axis designations.  If we were to look in any good Linear Algebra 

textbook, we would see that Column vectors and Row vectors are concepts that are supported by 

coordinate systems.  The elements of vectors found in linear algebra are implicitly associated with 

coordinate axes.  The inconsistency comes from the collision of the subject of Vector Calculus with the 

subject of Linear Algebra.  Fortunately, things can be clarified quite easily.  Consider the Grad of 𝑓(𝑋⃗) 

∇𝑋 ⃗ 𝑓(𝑋⃗) = (
𝜕𝑓

𝜕𝑋⃗
)

 ⃖         
𝑒 = 𝑒̂1

𝜕𝑓

𝜕𝑥1
+ 𝑒̂2

𝜕𝑓

𝜕𝑥2
+ 𝑒̂3

𝜕𝑓

𝜕𝑥3
 

where 𝑋⃗ ∈ ℝ3  . 

We only need to recognize that (
𝜕𝑓

𝜕𝑋 ⃗
)

 ⃖        
 is a Row vector in the Linear Algebra sense and once we start to 

work with that term, we can drop explicit use of the coordinate axis vector 𝑒 , it is implied.  Continuing 

with the example above the Gradient Vector is given by:  
 

                                       (
𝜕𝑓

𝜕𝑋 ⃗
)

 ⃖        
= 

The Jacobian Matrix 
The Jacobian matrix can be thought of as repeated application of the Gradient partial derivative 

operator  (
𝜕

𝜕𝑋 ⃗
)

 ⃖        
 to each element of the vector function.  The resulting Row vectors, which are the 

Gradient Vectors of each axis, are stacked one atop the other to form a matrix.  The resulting matrix 

may be square or rectangular.  The Jacobian matrix is given by: 

𝜕𝑓

𝜕𝑥1

 
𝜕𝑓

𝜕𝑥2

 
𝜕𝑓

𝜕𝑥3
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𝐽( 𝑓(𝑋⃗) ) =  
𝜕

𝜕𝑋 ⃗

 ⃖   
𝑓(𝑋⃗) . 

Below is an example with input vector 𝑋⃗ ∈ ℝ3 and vector function 𝑓 ∈ ℝ2 . 

 

 

𝐽( 𝑓(𝑋⃗) ) = 

 

 

The Neural Network Layer 
A neural network is a composition of nested vector functions commonly referred to as layers (3) (4) (5) 

(6).  One layer of a neural network is defined by the following equation: 

𝑌 ⃗ = 𝑓(𝐖𝑋⃗ + 𝐵 ⃗ ) 

where: 

W is a matrix of dimension a x b and is referred to as the Weight matrix. 

𝑋⃗ is a Column vector of dimension b x 1 and is referred to as the Input vector. 

𝐵 ⃗  is a Column vector of dimension a x 1 and is referred to as the Bias vector. 

The vector function f returns a vector of dimension a x 1 and is referred to as the Activation function. 

𝑌 ⃗  is a Column vector of the same dimension as f and contains the result of the Activation function. 

Let’s examine the shapes of the variables in this equation.  The format is a bit awkward, but it will do.  

The equation has been rewritten in a stretched-out format with the variable shapes written above each 

variable.  Remember, the shape is described by row x column. 

                                                                           (a x 1) = (a x 1)[ (a x b) * (b x 1)  +  (a x 1) ] 

                                                                                Y     =     f      [    W     *     X      +       B     ] 

The shape of the input vector X is influenced by the data that we are trying to model.  Later we will talk 

about interior layers, a.k.a. hidden layers, for now all you need to know is that those layers take as input 

the Y output of the previous layer, and in that case the dimension of X is specified by the output vector Y 

of the previous layer.  Either way you look at it, the data that you want to input into the network layer 

specifies the shape of X, i.e., the value of the “b” dimension.  That means it determines the number of 

columns of matrix W.  The “a” dimension specifies the dimension of the network layer output vector. 

By completing the multiplication of W * X the picture becomes clearer.  Let U = W * X.  The dimension of 

U is a x 1 and we can see that the equation reduces to Column vectors that are all of dimension a x 1 

with the activation function f returning a vector of dimension a x 1.  In practice, Activation functions are 

𝜕𝑓1

𝜕𝑥1

 
𝜕𝑓1

𝜕𝑥2

 
𝜕𝑓1

𝜕𝑥3

 

𝜕𝑓2

𝜕𝑥1

 
𝜕𝑓2

𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥3
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usually based on one simple scalar function that is applied to each element of the input vector.  

Whatever the dimension of the input vector, that is the dimension of the output vector of the Activation 

function. 

                                                                           (a x 1) = (a x 1)[ (a x 1)  +  (a x 1) ] 

                                                                                Y     =     f      [    U      +       B     ] 

Multiple Layers 
Most neural networks are multiple layers and are sometimes referred to as Fully Connected Feed 

Forward Neural Networks.  Before we go any further, we will need to introduce another index to the 

neural network layer equation to  keep track of the layers.  There are many ways to do this, but in this 

paper, I will introduce a pre-subscript.  It looks a bit weird but the good part about that is that it is easy 

to remember what it designates.  As you can see, it is just a way to keep track of all the parts of the 

neural network equation. 

𝑌 ⃗𝑘
 = 𝑓𝑘

 ( 𝐖𝑘
 𝑋⃗𝑘

 + 𝐵 ⃗𝑘
 ) 

Now that we have the k index to keep track of the layers, we have a way to write N-layer neural 

networks such as the two-layer network example below. 

𝑌 ⃗1
 = 𝑓1

 ( 𝐖1
 𝑋⃗1

 + 𝐵 ⃗1
 ) 

𝑋⃗2
 = 𝑌 ⃗1

  

𝑌 ⃗2
 = 𝑓2

 ( 𝐖2
 𝑋⃗2

 + 𝐵 ⃗2
 ) 

Layer two is called a hidden layer.  Consider the dimensions of the variables of these layers.  Layer one 

has dimensions 𝑎1
  and 𝑏1

 , layer two has dimensions 𝑎2
  and 𝑏2

 , where 𝑏2
 = 𝑎1

  .  Note that dimension 

𝑎2
  is determined by the required output of the network, but 𝑎1

  is a free parameter.  Interior 𝑎𝑘
  

dimensions are free parameters;  you decide what they should be when you create the network.  In 

general, the larger the value of 𝑎𝑘
  in the interior (hidden) layers, the more capacity the network has to 

fit the non-linearities of a data set. 

The two-layer example above is enough to capture the repeating pattern of a Feed Forward Neural 

Network and it should be clear to the reader how one might write a neural network with three or more 

layers.  The pattern is easily extended to more layers and with suitable values for 𝑾𝑘
  and 𝐵𝑘

 , a multi-

layer neural network can model extremely complex relationships in data sets.  And therein lies the 

challenge of neural networks.  How do we find proper values for 𝑾𝑘
  and 𝐵𝑘

 ? 

Neural Network Training 
In the language of the Neural Network community, solving for suitable 𝑊𝑘

  and 𝐵𝑘
 , is said to “train the 

network”.  Let’s look at the neural network layer equation again.  We’ll omit the k subscripts and only 

use them when we need to. 

𝑌 ⃗ = 𝑓(𝐖𝑋⃗ + 𝐵 ⃗ ) 
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When a trained network is applied, the input variable is 𝑋⃗ and the result is 𝑌 ⃗ , which implies that we 

know 𝐖 and 𝐵 ⃗ .  However, to train a network we use a known set of 𝑋⃗’s and corresponding 𝑌 ⃗  values, to 

solve for 𝐖 and 𝐵 ⃗ . 

The Loss Function 
To proceed we need additional nomenclature.   We need to be able to differentiate the actual network 

output 𝑌 ⃗  from the desired output specified by the training data.  We’ll represent the desired output 

with a prime accent over the return variable like so: 𝑌 ⃗̀  .  Now we need a measure of the error between 

the network output and the desired output.  We can define a function that takes 𝑌 ⃗̀  and 𝑌 ⃗  as input and 

returns a scalar value that is a measure of the error.  This function is often termed the Loss function and 

is given by: 

𝐸 = 𝐿(𝑌 ⃗ , 𝑌 ⃗̀ ). 

For a given 𝑋⃗,  E is a measure of the difference between what the network outputs, 𝑌 ⃗ , and what we 

want it to output, 𝑌 ⃗̀ .  Now let’s discuss the nomenclature for the training set.  First, we will define a 

training pair, which we said is an input value 𝑋⃗ and a corresponding desired network output 𝑌 ⃗̀ .  But 

training data comes in sets of training pairs, so to account for that we’ll add a left superscript and write 

( 𝑋⃗1
𝑖 , 𝑌 ⃗ 

 𝑖 ), where the left superscript 𝑖 identifies a specific pair.  Note the input value is 𝑋⃗1
𝑖 , the leading 

subscript k is fixed at 1, indicating that it is input into the first or “top” layer.  A training data set is given 

by {( 𝑋⃗1
1 , 𝑌 ⃗ 

 1̀ ) , ( 𝑋⃗1
2 , 𝑌 ⃗ 

 2̀ ) … ( 𝑋⃗1
𝑁 , 𝑌 ⃗ 

 𝑁 )}, where N is the number of training samples.  Given this definition 

of the training set, the Loss function can be rewritten: 

𝐸 
𝑖 = 𝐿 (𝑌 ⃗ ( 𝐖𝑘

 , 𝐵 ⃗𝑘
 , 𝑋⃗1

𝑖 ), 𝑌 ⃗ 
 𝑖 ) 

where 𝐖𝑘
  and 𝐵 ⃗𝑘

  are the free variables.  𝐖𝑘
  and 𝐵 ⃗𝑘

  are often referred to collectively as Weight Space 

and within that space resides the Error Surface 𝐸 
𝑖 .  For a given training pair, if we were to assign a range 

of values to each of the elements of 𝐖𝑘
  and 𝐵 ⃗𝑘

  , and with those values compute the error 𝐸 
𝑖  for every 

combination, it would form a surface in Weight Space which we call the Error Surface.  The Error Surface 

is a hyper-surface for virtually all neural networks, and we usually have no hope of being able to 

visualize it, but the concept is very important.   

The Loss Layer 
The Neural Network training problem can be stated as follows: 

Given a training set {( 𝑋⃗1
𝑖 , 𝑌 ⃗ 

 𝑖 )} , 𝑖 = 1 𝑡𝑜 𝑁, and a network structure of 𝑘 layers, find values for 

𝐖𝑘
  , 𝐵 ⃗𝑘

  that minimize the Average Error defined by 𝐸 =
1

𝑁
∑ 𝐸 

𝑖𝑁
𝑖 . 

The two-layer network example we saw above is modified for training by adding the Loss layer to the 

end of the computation.  The complete set of equations are shown below. 

𝑌 ⃗1
 = 𝑓1

 ( 𝐖1
   𝑋⃗1

𝑖 + 𝐵 ⃗1
 ) 

𝑋⃗2
 = 𝑌 ⃗1
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𝑌 ⃗2
 = 𝑓2

 ( 𝐖2
   𝑋⃗2

 + 𝐵 ⃗2
 ) 

𝐸 
𝑖 = 𝐿( 𝑌 ⃗2

 , 𝑌 ⃗ 
 𝑖̀ ) 

Binary Classification Example 
Before we discuss a technique for training a neural network let us look at an example simple enough 

that we can render the Error Surface and try to really understand what it represents (5).  In this example 

a one-layer model will be used to solve a binary classification problem.   The network is defined by: 

𝑌 ⃗1
 = 𝑓1

 ( 𝐖1
   𝑋⃗1

 + 𝐵 ⃗1
 ) 

𝐸 
𝑖 = 𝐿( 𝑌 ⃗1

 , 𝑌 ⃗ 
 𝑖̀ ) , 

where 𝑓1
  is defined to be the Sigmoid Activation function and L is defined to be the L2 Loss function.  I’ll 

list some of the common Activation functions and Loss functions in an appendix, but here I will 

introduce the Sigmoid Activation function and the L2 Loss function. 

The Sigmoid Activation function is given by: 

𝑆(𝑍) =
1

1+𝑒−𝑍  ⃗
 , meaning that  𝑆𝑖(𝑍) =

1

1+𝑒−𝑍𝑖
  .  

The Sigmoid function approaches its minimum and maximum asymptotically, so this network will never 

output anything greater than one or less than zero. 

 

The L2 Loss function is given by: 

𝐿2 ( 𝑌 ⃗𝑁
 , 𝑌 ⃗ 

 𝑖 ) = 𝑍𝑇𝑍 , the Dot product of 𝑍 with itself, where  𝑍 = 𝑌 ⃗𝑁
 − 𝑌 ⃗ 

 𝑖 . 

Problem Definition: 
Consider colored points placed on an X-Y Cartesian plane and restrict the color of a point to either 

yellow or blue.  Codify the colors with the numeric values one and zero respectively.  The choice of 

number assignment is not arbitrary, they are selected because they are the extremum of the Sigmoid 

function.  The assigned values are commonly referred to as labels.  The network input vector 𝑋⃗1
  will 

have two elements, one for the x-coordinate and one for the y-coordinate.  The network output 𝑌 ⃗1
  will 

contain a single value indicating the computed label.  Given a set of points and labels, the network and 
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Loss layer defined above will try to define a surface, called the Decision Surface, which passes through 

each point label.  Note that the Sigmoid function never attains a value of zero or one and only 

approaches those values asymptotically, so the Decision Surface can only try to get close to those values.  

In fact, our network is solving a logistic regression problem and we must use an interpretation rule 

outside of our model to make it a classifier.  The rule could be something like: if 𝑌 ⃗1
  is greater than 0.5 

then the class label is 1, else the class label is 0.  Don’t be distracted be these details, the goal here is to 

use this simple example to introduce the concept of the Decision Surface and to explore the Error 

Surface of the network.  To keep things tractable only three training points will be used and are shown 

graphically below. 

 

 

Let’s review the details of the network layer used in this example.  The problem definition states that 

the input vector ( 𝑋⃗1
 ) has two elements and the output vector ( 𝑌 ⃗1

 ) has one element.  That is everything 

we need to know to completely define the shape of 𝐖1
  and 𝐵 ⃗1

 .  𝐖1
  must have two columns to 

accommodate the dimension of the input vector and must have one row to accommodate the 

dimension of the output vector.  𝐵 ⃗1
  must have one row to  accommodate the size of the output vector.  

The Weight Space of this network is a 1 x 2 matrix  and a 1 x 1 Column Vector . 

The network was trained on the three points and resulted in the follow values: 

𝐖1
 = [−0.990791, −0.987997] 

𝐵 ⃗1
 = [4.97818] 

We can render a Decision Surface for this network solution by defining a grid of points and evaluating 

each one with the solved network and plotting the result.  The output of a 10 x 10 grid is shown below 

with the training points overlaid on the plot.  As you can see, the resulting surface corresponds to the 

training point labels very well. 

Training Pairs 

Point X Y Label 

P1 6.5 4.0 0 

P2 4.5 -4.0 1 

P3 -4.0 4.5 1 
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Now let’s turn our attention to the Error Surface of each training pair.  To make this tractable we will 

hold the bias vector constant and vary the values of the weight matrix.  W0 will range from -3 to 1 and 

W1 will range from -3 to 1. The error value of the converged solution will be the point in the center of 

the graph because the W0 and W1 ranges were selected to put it in the center.  The surface plots below 

show the Error Surface for each of the training points and the Average Error Surface.  The Average Error 

Surface is the one where we want to find a minimum, preferably a global minimum. 
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The coordinate of the solution value is marked on the Average Error Surface plot with a red arrow.  You 

can see that the solver correctly found a point in the region of the Average Error Surface that is low 

valued.  The Average Error Surface posses an offset rectangular region that is flat and low valued and 

any point in this region is an acceptable solution to this problem. 

The fact that we could make the previous observation is not a luxury that we will have in any practical 

problem.  That is the point of this exercise.  The network is simple enough that we can plot the Error 

Surface and simply note that there is a deep rectangular “canyon” and see that an acceptable solution 

exists anywhere at the bottom of that canyon, because we can see that is where the surface attains a 

minimum.  In even a slightly more complex network architecture we will have no sense of what the Error 

Surface looks like, if for no other reason than it exists in higher dimensions.   

The takeaway is this, for every network an Error Surface does exist, and we are able to compute the 

gradient of the surface at any point.  The most successful method of training a neural network to date is 

to begin by taking an educated guess at a reasonable starting point,  which is not a guess at a solution,  

but merely an attempt to begin at a place on the error surface that is a reasonable value and reasonable 

slope (gradient).  Reasonable being a value that is not so big or not so small as to be difficult to handle 

numerically.  Then we compute the gradient at that point and go in the opposite direction, downhill, to 

the next point, then recompute the gradient and repeat the process until some stopping criteria is met.  

All without the benefit of knowing what the Error Surface looks like, or even being able to comprehend 

the dimensional space that it exists in, for that matter.  Typical neural network weight space dimensions 

are on the order of 1000’s.   The procedure for marching downhill is called gradient descent and the 

gradient is computed using a technique called Back-Propagation which will be covered next. 

Gradient Descent 
To date the most successfully applied method for training a neural network is the Gradient Descent 

method (4).  The concept is simple.  Initialize the parameters of the network with a guess, such as 

random values.  This is a point in Weight Space.  Then compute the gradient of the Error Surface at that 

point for each training pair.  The average of the gradients of all training pairs in the training set yields the 

gradient of the Average Error Surface at the point in Weight Space.  Knowing the gradient, use a 

Gradient Descent method to advance from the current point in Weight Space to one that is expected to 

yield a smaller Loss function value.  But before a Gradient Descent method is applied the gradient value 

must be determined.  The Back-Propagation method can be used to determine that value. 

The Back-Propagation Method 
The gradient computation of the Error Surface at a point can be broken down into a few formal steps 

that can be applied to a neural network of any depth (7).  Breaking down these steps by working with 

the two-layer network example is enough to determine a pattern that can be generalized. 

We begin with the two-layer network equations.  

𝑌 ⃗1
 = 𝑓1

 ( 𝑍1
 ) ,    where     𝑍1

 = 𝐖1
   𝑋⃗1

𝑖 + 𝐵 ⃗1
  

𝑋⃗2
 = 𝑌 ⃗1

  

𝑌 ⃗2
 = 𝑓2

 ( 𝑍2
 ),      where     𝑍2

 = 𝐖2
   𝑋⃗2

 + 𝐵 ⃗2
  

(1) 

(2) 

(3) 
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𝐸 
𝑖 = 𝐿( 𝑌 ⃗2

 , 𝑌 ⃗ 
 𝑖̀ ) 

These equations really define just one single equation, and we can see that by substituting 𝑌 ⃗1
  directly 

into Eq. (3) and then substituting that into Eq. (4) will yield: 

𝐸 
𝑖 = 𝐿 (( 𝑓2

 ( 𝐖2
   ( 𝑓1

 ( 𝐖1
   𝑋⃗1

𝑖 + 𝐵 ⃗1
 )) + 𝐵 ⃗2

 )) , 𝑌 ⃗ 
 𝑖 ) 

To facilitate understanding of the Back-Propagation method we will assign dimensions to the 2-layer 

network. 

Layer 1:  𝑎1 = 2  𝑏1 = 3 

A 2-element Column vector is passed into the network (Layer 1) and a 3-element vector is returned from 

the first layer and passed to the second layer. 

Layer 2:  𝑎2 = 3  𝑏2 = 2 

The second layer accepts a 3-element Column vector and returns a 2-element Column vector. 

There is no need to give any meaning to the input and output of this network.  Once the method 

development is complete it will be applicable to any dimension and network depth. 

The Back-Propagation method begins with a forward pass through the network and the storage of 

supporting data.  A forward pass-through Eq. (1) through Eq. (4) yields values for the intermediate 

variables: 𝑌 ⃗1
 , 𝑌 ⃗2

 , 𝑍1
 , 𝑍2

 , and 𝑋⃗2
  . 

The Weight Space of the example network is 17 dimensions.  The gradient of E is also in ℝ17 and is given 

by: 

∇𝐸 = ∇ 𝐖2
  𝐸 + ∇ 𝐵 ⃗2

  𝐸 + ∇ 𝐖1
  𝐸 + ∇ 𝐵 ⃗1

  𝐸, 

where each gradient on the right is a subspace of ℝ17. 

∇ 𝐖1
  𝐸 = (

𝜕𝐿

𝜕 𝐖1
       ⃗

)
 ⃖              

 𝑒 =
𝜕𝐿

𝜕 𝐖1
 

1
𝑒̂1 +

𝜕𝐿

𝜕 𝐖1
 

2
𝑒̂2 + ⋯ +

𝜕𝐿

𝜕 𝐖1
 

6
𝑒̂𝟔 

∇ 𝐵 ⃗1
  𝐸 = (

𝜕𝐿

𝜕 𝐵 ⃗1
 )

 ⃖          
 𝑒 =

𝜕𝐿

𝜕 B1
 

1
𝑒̂7 +

𝜕𝐿

𝜕 B1
 

2
𝑒̂8 +

𝜕𝐿

𝜕 B1
 

3
𝑒̂𝟗 

∇ 𝐖2
  𝐸 = (

𝜕𝐿

𝜕 𝐖2
       ⃗

) 
 ⃖            

𝑒 =
𝜕𝐿

𝜕 𝐖2
 

1
𝑒̂10 +

𝜕𝐿

𝜕 𝐖2
 

2
𝑒̂11 + ⋯ +

𝜕𝐿

𝜕 𝐖2
 

6
𝑒̂𝟏𝟓 

∇ 𝐵 ⃗2
  𝐸 = (

𝜕𝐿

𝜕 𝐵 ⃗2
 )

 ⃖          
 𝑒 =

𝜕𝐿

𝜕 B2
 

1
𝑒̂16 +

𝜕𝐿

𝜕 B2
 

2
𝑒̂𝟏𝟕 

Vectorizing a matrix 

Take note of this notation: 𝐖𝑘
       ⃗ , it is the matrix variable 𝐖𝑘

  with an arrow placed above it.  The arrow 

notation over a matrix is used to indicate that the matrix is to be treated as a vector.  I call this a 

vectorized matrix.  A vectorized matrix means that each of its columns are placed one below the other 

to form a vector.  We could just as well say that each row slides in front of the other, then transpose 

(6) 

(8) 

(9) 

(4) 

(5) 

(7) 
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that into a Column vector.  In practice it is arbitrary, either way works as long as you remain consistent.  

Vectorizing by column was selected for this paper because the numerical implementation that 

accompanies it utilizes the Eigen matrix library, and the Eigen library vectorizes a matrix by columns.  

Example vectorizing a 2 x 3 matrix: 

 

 

 

 

 

 

 

Derivative Chain Rule 

The Back-Propagation method is made possible by the derivative chain rule.  Recall that given a function 

of f, that is a function of g,  that is a function of x, expressed as 𝑓(𝑔(𝑥)), the derivative of f with respect 

to x is given by: 

𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑔
 
𝜕𝑔

𝜕𝑥
 

Evaluation of the Network Error Surface Gradient 
We will use the derivative chain-rule to evaluate Eq. (6) – Eq. (9).   In the sections that follow we 

examine each term in the equations and determine how to evaluate them.  After we know how to 

evaluate all of the individual terms a pattern will emerge allowing us to easily evaluate the Error Surface 

Gradients for a Neural Network of any depth. 

Evaluate Eq. (8): 
Using the chain rule: 

(
𝜕𝐿

𝜕 𝐖2
       ⃗

)
 ⃖           

= (
𝜕𝐿

𝜕 𝑌 ⃗2
 )

 ⃖         𝜕 𝑓2
 

𝜕 𝑍⃗2
 

𝜕 𝑍⃗2
 

𝜕 𝐖2
       ⃗

 

Now we consider how to evaluate the terms on the right one-by-one. 

Gradient of the Loss Function 

Determine the Gradient vector of the Loss function with respect to its input, (
𝜕𝐿

𝜕 𝑌 ⃗2
 )

 ⃖         
.  The value of the 

input vector to the Loss function is one of the intermediate values that is known because its value was 

saved during the forward pass.  To proceed, the partial derivative of the Loss function with respect to  its 

independent variable is required.  To make this a concrete example let’s suppose that the Loss function 

is the L2 function we saw earlier.  Its derivative is given by: 

1,1

2,1

1,2

2,2

1,3

2,3

1,2

2,2

1,3

2,3

1,1

2,1

1,2

2,2

1,3

2,3

(10) 
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𝜕 𝐿2( 𝑌 ⃗𝑁
 , 𝑌 ⃗ 

 𝑖 )

𝜕 𝑌 ⃗𝑁
 =

1

2
𝑍 , where 𝑍 = 𝑌 ⃗𝑁

 − 𝑌 ⃗ 
 𝑖̀  , 

where in this example N = 2.  Remember, 𝑌 ⃗ 
 𝑖  is known, it is part of a training pair. 

You can think of this as a “drop-in” or “modular” computation.  During Back-Propagation input the 

stored value of the Loss function input vector into the gradient vector derivative of the Loss function 

and get a Row vector back.  The size (number of elements) in the returned Row vector is always the 

same as the size of the input vector.  The output from the L2 loss function is 
1

2
𝑍𝑇.   

Activation Function Jacobian 

Now consider the second term on the right of Eq. (10), 
𝜕 𝑓2

 

𝜕 𝑍⃗2
  , this derivative is in the form of a Jacobian 

derivative.  It is the Jacobian of the Activation function.  The result of this operation is always a square 

matrix because the size of the vector output by the Activation function is always equal to the size of the 

input vector.  The value of the input vector to the Activation function is known from the forward pass.  

To proceed, the Jacobian of the Activation function with respect to its independent variable is required.  

Let’s suppose that the Activation function is the Sigmoid function we saw earlier.  The Jacobian is given 

by: 

[
𝑄1(𝑍) ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝑄𝑁(𝑍)

] 

where 

𝑄𝑖(𝑍) = 𝑆𝑖(𝑍) (1 − 𝑆𝑖(𝑍)) . 

Here the derivative of the Sigmoid is given without explanation.  If you are interested in the 

development details, there are many available sources online. 

In this example 
𝜕 𝑓2

 

𝜕 𝑍⃗2
  is given by: 

[
𝑄1( 𝑍2

  ) 0

0 𝑄2( 𝑍2
  )

] . 

Note that the matrix above is a diagonal matrix.  Most Activation functions yield this result with a few 

notable exceptions. 

Like the Loss function, you can think of the Activation function Jacobian as a “drop-in” or “modular” 

computation.  During Back-Propagation input the stored value of the Activation function input vector 

into the Activation function Jacobian computation and get a matrix back.  The matrix will always be 

square as noted above.  Most commonly, the return will be a diagonal matrix, but not always.  If you 

implement your own neural network solver, a bit of clever code can exploit the times when the return is 

a diagonal matrix. 
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The Weight Matrix Derivative 

Now we will address the final term in Eq. (10), 
𝜕 𝑍⃗2

 

𝜕 𝐖2
       ⃗

 .  This is an important term to understand how to 

evaluate properly as it will come up again in the development of a Convolutional Neural Network.  

Before we begin, there is some bookkeeping to do with the terms that have already been evaluated.  

Recall that the Loss function gradient vector is a Row Vector, and that the Jacobian of the Activation 

function is a square matrix.  The number of elements in the Row vector (its “b” dimension) will always 

be equal to the number of rows of the matrix (its “a” dimension), making them suitable for 

multiplication to form an intermediate Row Vector we’ll call Delta (δ) and given by: 

𝛿 = (
𝜕𝐿

𝜕 𝑌 ⃗2
 )

 ⃖         𝜕 𝑓2
 

𝜕 𝑍⃗2
  . 

Now we are ready to evaluate the final term in Eq. (10).  Note that the derivative takes the form of a 

Jacobian derivative.   Expanding the term by substitution for 𝑍2
  defined in Eq. (3) yields the following: 

𝜕 𝑍2
 

𝜕 𝐖2
       ⃗

=
𝜕

𝜕 𝐖2
       ⃗

( 𝐖2
   𝑋⃗2

 + 𝐵 ⃗2
 ) 

Clearly, the derivative of the Bias term is zero and we are left with  

𝜕 𝑍⃗2
 

𝜕 𝐖2
       ⃗

=
𝜕

𝜕 𝐖2
       ⃗

( 𝐖2
   𝑋⃗2

 ) . 

To show the next steps in the evaluation I’ll use the dimensions of the example network and evaluate 

the matrix multiplication on the right leading to: 

𝜕

𝜕 𝐖2
       ⃗

( 𝐖2
   𝑋⃗2

 ) =
𝜕

𝜕 𝐖2
       ⃗

 [
W2
 

1,1 𝑋2
 

1 + W2
 

1,2 𝑋2
 

2 + W2
 

1,3 𝑋2
 

3

W2
 

2,1 𝑋2
 

1 + W2
 

2,2 𝑋2
 

2 + W2
 

2,3 𝑋2
 

3
]

                                                                             ⃗
 

We know that a gradient derivative operator such as 
𝜕

𝜕 𝐖2
       ⃗

 results in a Row vector, and recalling the form 

of a vectorized matrix, this gradient derivative is applied to each equation in the Column vector on the 

right in Eq. (12).  To be perfectly clear about this, let’s expand the gradient derivative operator. 

𝜕

𝜕 𝐖2
       ⃗

= {
𝜕

𝜕 𝐖2
 

1,1
,

𝜕

𝜕 𝐖2
 

2,1
,

𝜕

𝜕 𝐖2
 

1,2
,

𝜕

𝜕 𝐖2
 

2,2
,

𝜕

𝜕 𝐖2
 

1,3
,

𝜕

𝜕 𝐖2
 

2,3
} 

The resulting Jacobian matrix will be 2 x 6.  A good way to visualize this computation is to think of each 

of the partial derivatives above as a column heading, while the values in the column are due to the 

application of the partial derivative in the heading.  Evaluation of Eq. ?? results in the following matrix: 

[
𝑋2
 

1 0 𝑋2
 

2 0 𝑋2
 

3 0
0 𝑋2

 
1 0 𝑋2

 
2 0 𝑋2

 
3
] 

Inserting this matrix and the Delta Row vector into Eq. (10) we can complete the evaluation of the term. 

(
𝜕𝐿

𝜕 𝐖2
       ⃗

)
 ⃖              

= [𝛿1 𝛿2] [
𝑋2
 

1 0 𝑋2
 

2 0 𝑋2
 

3 0
0 𝑋2

 
1 0 𝑋2

 
2 0 𝑋2

 
3
] 

= [𝛿1 𝑋2
 

1 𝛿2 𝑋2
 

1 𝛿1 𝑋2
 

2 𝛿2 𝑋2
 

2 𝛿1 𝑋2
 

3 𝛿2 𝑋2
 

3] 

(11) 

(14) 

(13) 

(12) 
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At this point let us remind ourselves of why we made this computation.  Each element in the result of 

Eq. (14) is the slope of the Error Surface with respect to a corresponding element of the 𝐖2
  matrix.  We 

will use this slope to modify the value of the corresponding element in an effort to find a minimum on 

the Error Surface.  It makes no conceptual difference how we access the value of the slope, but in 

practice it is much more efficient to have all the slopes of Eq. (14) in the same form as 𝐖2
  .  To this end, 

the result of Eq. (14) is reformed into a matrix.  We use the “column headings” of Eq. (13) to know 

where to place the elements.  The rearrangement leads to the following result: 

𝛥 𝐖2
 = [

𝛿1 𝑋2
 

1 𝛿1 𝑋2
 

2 𝛿1 𝑋2
 

3

𝛿2 𝑋2
 

1 𝛿2 𝑋2
 

2 𝛿2 𝑋2
 

3
] 

There is a simple way to compute 𝛥 𝐖2
  directly, it is given by: 

𝛥 𝐖2
 = ( 𝑋⃗2

  𝛿 )
𝑇

. 

Note that there is no mathematical rhyme or reason to Eq. (16), we get there through inference by 

examining the hard-earned result of Eq. (15).  

Evaluate Eq. (9): 

(
𝜕𝐿

𝜕 B2
      ⃗

)
 ⃖         

= (
𝜕𝐿

𝜕 𝑌 ⃗2
 )

 ⃖         𝜕 𝑓2
 

𝜕 𝑍⃗2
 

𝜕 𝑍⃗2
 

𝜕 B2
      ⃗

 

The first two terms on the right-hand side we have already seen, and we know how to evaluate them.   

The B Derivative 
𝜕 𝑍⃗2

 

𝜕 B2
      ⃗

=
𝜕

𝜕 B2
      ⃗

( 𝐖2
   𝑋⃗2

 + 𝐵 ⃗2
 ) =

𝜕

𝜕 B2
      ⃗

( 𝐵 ⃗2
 ) 

The evaluation of this derivative is less cumbersome, but it is still a Jacobian derivative. 

𝜕

𝜕 B2
     ⃗

= {
𝜕

𝜕 B2
 

1
,

𝜕

𝜕 B2
 

2
} 

The resulting Jacobian matrix will be 2 x 2.  Evaluation of Eq. (18) results in the following matrix: 

[
1 0
0 1

] 

Inserting this matrix and the Delta Row vector into Eq. (9)  we can complete the evaluation of the term. 

(
𝜕𝐿

𝜕 B2
     ⃗

)
 ⃖            

= [𝛿1 𝛿2] [
1 0
0 1

] 

= [𝛿1 𝛿2] 

Finally, the result can be reformed into a Column vector given by: 

𝛥 B2
 = [

𝛿1

𝛿2
] 

(15) 

(17) 

) 

(19) 

(16) 

(18) 

) 
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Evaluate Eq. (6): 
Now we will begin to evaluate the Error Surface Gradients due to Layer-1 and you will see why we 

started with the Layer-2 gradients.   

(
𝜕𝐿

𝜕 𝐖1
       ⃗

)
 ⃖           

= (
𝜕𝐿

𝜕 𝑌 ⃗2
 )

 ⃖         𝜕 𝑓2
 

𝜕 𝑍⃗2
  

𝜕 𝑍⃗2
 

𝜕 X2
      ⃗

 
𝜕 𝑓1

 

𝜕 𝑍⃗1
  

𝜕 𝑍⃗1
 

𝜕 𝐖1
       ⃗

 

On the right-hand side of Eq. (20) the third term has a form that we haven’t seen before. 

𝜕 𝑍2
 

𝜕 X2
     ⃗

=
𝜕

𝜕 X2
     ⃗

( 𝐖2
   𝑋⃗2

 + 𝐵 ⃗2
 ) =

𝜕

𝜕 X2
     ⃗

( 𝐖2
   𝑋⃗2

 ) 

Expanding the matrix multiplication as we did in Eq. (12) yields: 

𝜕

𝜕 X2
      ⃗

( 𝐖2
   𝑋⃗2

 ) =
𝜕

𝜕 X2
      ⃗

 [
W2
 

1,1 𝑋2
 

1 + W2
 

1,2 𝑋2
 

2 + W2
 

1,3 𝑋2
 

3

W2
 

2,1 𝑋2
 

1 + W2
 

2,2 𝑋2
 

2 + W2
 

2,3 𝑋2
 

3
]

                                                                             ⃗
 

The gradient derivative operator,  

𝜕

𝜕 X2
      ⃗

= {
𝜕

𝜕 X2
 

1
,

𝜕

𝜕 X2
 

2
,

𝜕

𝜕 X2
 

3
}, 

applied to the Column vector of Eq. (21) yields the following matrix: 

[
𝐖2
 

1,1 𝐖2
 

1,2 𝐖2
 

1,3

𝐖2
 

2,1 𝐖2
 

2,2 𝐖2
 

2,3
] , 

which upon inspection reveals that  

𝜕

𝜕 X2
      ⃗

( 𝐖2
   𝑋⃗2

 ) = 𝐖2
  . 

Now we know how to evaluate all the terms in Eq. (20) and could simply plug them to obtain a result.  

Doing so reveals a pattern that can be generalized and will be explained shortly. 

Evaluate Eq. (7): 

(
𝜕𝐿

𝜕 B1
      ⃗

)
 ⃖         

= (
𝜕𝐿

𝜕 𝑌 ⃗2
 )

 ⃖         𝜕 𝑓2
 

𝜕 𝑍⃗2
  

𝜕 𝑍⃗2
 

𝜕 X2
      ⃗

 
𝜕 𝑓1

 

𝜕 𝑍⃗1
  

𝜕 𝑍⃗1
 

𝜕 B1
      ⃗

 

We have seen all of the forms of the terms in this equation before.  Can you see the repeating pattern in 

the terms? 

The Back-Propagation algorithm - Putting it all together 
Using the chain-rule to evaluate the Error Surface gradients due to Layer-1 reveals a pattern in the 

terms.  The Back-Propagation algorithm starts at the Loss term of the network and works back to Layer-

1.  I’ll introduce a Row vector called the Inter Layer (IL) Row vector to clarify the process.  Take note of 

how Eq.(6) – Eq. (9) are being evaluated.  The 𝐼𝐿 ⃖  𝑘
  Row vector is propagating the product of terms from 

the Loss Layer to Layer-2 (defined by Eq. (8) and Eq. (9) ) and finally to Layer-1 (defined by Eq. (6) and Eq. 

(7)). 

Starting with the Loss layer initialize the Inter Layer Row vector: 

(20) 

) 

(21) 

) 

(22) 

) 
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𝐼𝐿 ⃖  3
 = (

𝜕𝐿

𝜕 𝑌 ⃗2
 

)
 ⃖            

 

The Inter Layer Row vector is passed to Layer-2 and the following computations are made: 

𝛿2
 = 𝐼𝐿 ⃖  3

  [
𝜕 𝑓2

 

𝜕 𝑍⃗2
 ], 

where 𝛿2
  is a Row vector of the same dimension as 𝐼𝐿 ⃖  3

 . 

 𝐼𝐿 ⃖  2
 = 𝛿2

 [
𝜕 𝑍2

 

𝜕 X2
     ⃗

] = 𝛿2
  𝐖2

  

𝛥 𝐖2
 = ( 𝑋⃗2

  𝛿2
  )

𝑇
 

𝛥 B  ⃗2
 = ( 𝛿2

  )
𝑇

 

The Inter Layer Row vector is passed to Layer-1, and we begin to see the Back-Propagation pattern. The 

following computations are made based on 𝐼𝐿 ⃖  2
 : 

𝛿1
 = 𝐼𝐿 ⃖  2

  [
𝜕 𝑓1

 

𝜕 𝑍⃗1
 ], 

where 𝛿1
  is a Row vector of the same dimension as 𝐼𝐿 ⃖  2

 . 

 𝐼𝐿 ⃖  1
 = 𝛿1

 [
𝜕 𝑍1

 

𝜕 X1
     ⃗

] = 𝛿1
  𝐖1

  

Note that 𝐼𝐿 ⃖  1
  is never needed, as Back-Propagation ends at the top layer. 

𝛥 𝐖1
 = ( 𝑋⃗1

  𝛿1
  )

𝑇
 

𝛥 B  ⃗1
 = ( 𝛿1

  )
𝑇

 

Generalizing, the Back-Propagation algorithm is initialized with the Loss function gradient Row vector, 

then the Inter Layer vector is propagated up through the network from Layer-N to Layer-1. 

(The square brackets [] denote a 

matrix and are used as a reminder) 
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Network Forward Pass Algorithm 

Given a training pair { 𝑋⃗, 𝑌 ⃗́1
 }, use 𝑋⃗1

  as input into Layer-1.  Feed the output of each layer into the input of the next 

layer.  The final output is the network result which would be used when the network is applied.  During training the 

final output is passed into the Loss function along with its label 𝑌 ⃗́ .  Internal states are stored during this pass. 

1: for 𝑛 = 1 𝑡𝑜 𝑁 do 

2:  𝑍⃖𝑛
 = 𝐖 𝑋⃗𝑛

 +𝑛
 B  ⃗𝑛

   

3:  𝑋⃗𝑛+1
 = 𝑓( 𝑍𝑛

 )𝑛
  

4:  end   

5: 𝑒𝑟𝑟𝑜𝑟 = 𝐿𝑜𝑠𝑠 ( 𝑋⃗𝑁+1
 , 𝑌 ⃗́ ) 

 

 

Back-Propagation Algorithm 

Initialize the Inter-layer Row vector with the Loss function gradient.  The Inter-layer Row vector is used to compute 

the layer delta Row vector, then the Inter-layer Row vector can be updated for use in the next higher layer where 

N is the number of layers in the network.  Note that there is not a need to maintain each Inter-layer Row vector.  

One Inter-layer Row vector can be used and updated. 

1:   𝐼𝐿 ⃖  = (
𝜕𝐿

𝜕 𝑌 ⃗𝑁
 )

 ⃖          
 

2: for 𝑛 = 𝑁 𝑡𝑜 1 do 

3:  𝛿𝑛
 = 𝐼𝐿 ⃖   [

𝜕 𝑓𝑛
 

𝜕 𝑍⃗𝑛
 ] 

4:  𝐼𝐿 ⃖  = 𝛿𝑛
 [

𝜕 𝑍⃗𝑛
 

𝜕 X𝑛
      ⃗

] = 𝛿𝑛
  𝐖𝑛

  

5:  𝛥 𝐖𝑛
 = ( 𝑋⃗𝑛

  𝛿𝑛
  )

𝑇
 

6:  𝛥 B  ⃗𝑛
 = ( 𝛿𝑛

  )
𝑇

 

7: end 

 

Compute the Average Error Surface 
The gradient of the Average Error Surface is computed by using each training pair one-by-one for a 

forward pass through the network, which establishes the values of the intermediate variables, then 

immediately making a Back-Propagation pass back through the network, all the while maintaining a few 

ancillary variables used to compute the averages of the delta variables 𝛥 𝐖𝑘
 ̅̅ ̅̅ ̅̅ ̅ and 𝛥 B  ⃗𝑘

 ̅̅ ̅̅ ̅ .  The averages 

may be accomplished by keeping a summation and dividing by the number of training pairs or rolling N 

into the step size of the update algorithm.  I prefer to keep a running average and will outline that 

simple algorithm below. 

 

 Inter-Layer row vector  *  Activation  Jacobian 

 Initialize the Inter-Layer row vector with the Loss gradient 

 Update the Inter-Layer row vector for use by the next higher layer 

 Apply the Activation function f to vector Z. 
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Average Algorithm 
Given a batch of P training pairs.  Retrieve each training pair from the batch one-by-one and pass the input vector 
X into the network, then use the result along with the training label Y to compute the Loss function gradient for 
training pair p.  Use the resultant gradient to build the average Loss gradient for each of N layers. 

  
1:     for 𝑝 = 1 𝑡𝑜 𝑃 do 

2:   (𝑋⃗, 𝑌 ⃗́ ) = 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑃𝑎𝑖𝑟(𝑝) 

3:           (𝛥 𝐖𝑘
  , 𝛥 B  ⃗𝑘

 ) = 𝐴𝑝𝑝𝑙𝑦𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑋⃗, 𝑌 ⃗́ ) 

4: a = 1 / p 
5: b = 1 - a 
6: for 𝑘 = 1 𝑡𝑜 𝑁 do 

7:  𝛥 𝐖𝑘
 ̅̅ ̅̅ ̅̅ ̅ = 𝑎 𝛥 𝐖𝑘

 + 𝑏 𝛥 𝐖𝑘
 ̅̅ ̅̅ ̅̅ ̅ 

8:  𝛥 B  ⃗𝑘
 ̅̅ ̅̅ ̅ = 𝑎 𝛥 B  ⃗𝑘

 + 𝑏 𝛥 B  ⃗𝑘
 ̅̅ ̅̅ ̅ 

9: end 
10:   end 

 

The Update Algorithm 
There is a lot written about the how to choose an update step.  The size of the step can be tailored to 

each parameter of Weight Space and can be modified as the iterative process converges.  The simplest 

approach is to use a fixed size step and that is what will be used in the section that follows.  Once you 

grasp the concepts discussed in this paper you will be ready to understand and apply more complex step 

size selection algorithms. 

Let Eta (η) represent the descent step size.  The update process is simple, advance the value of the 

current point in Weight Space in the downhill direction.  Remember, the gradient of the Error Surface at 

the current point in Weight Space tells us the direction of steepest assent.  We want to advance in the 

downhill direction, so we go in the opposite (mathematically, negative) direction.  We must still decide 

how far to go in the specified direction and that is given by η.  Given η, the network solution is advanced 

by applying the following algorithm. 

Update Algorithm 

Having computed the Weight Space gradients of each network layer, iterate over each of N layers, and update the 

Weight matrix and Bias vector.  The step size η is provided. 

1: for 𝑘 = 1 𝑡𝑜 𝑁 do 

2:  𝐖𝑘
 = 𝐖𝑘

 − 𝜂  𝛥 𝐖𝑘
 ̅̅ ̅̅ ̅̅ ̅ 

3:  B  ⃗𝑘
 = B  ⃗𝑘

 − 𝜂 𝛥 B  ⃗𝑘
 ̅̅ ̅̅ ̅ 

4: end 

If η is set too large the solution will not converge, rather the parameters will get larger and larger until a 

math overflow occurs.  I have found for networks of a few layers starting η at 1E-5 works well.  Observe 

the network error for stability and check that it is getting smaller and smaller.  If it is, multiply η by 10 

and try again.  If the solution remains stable, it should converge faster. 

 Get the input vector and label for training pair p. 

 Use the training pair for one training pass. 
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Gradient Descent Methods 
There are three common ways the Error Surface gradient is used to minimize the Loss function, the 

Batch method, the Mini-Batch method, and  Stochastic descent.  

The Batch Method 
The Batch method utilizes the entire training set to compute the Average Error surface gradient.  Then 

the gradient, along with a step value, is used to determine the next point in Weight Space.  This is the 

method that was outlined in this paper in the Average Algorithm above. 

Stochastic Gradient Descent 
We noted that each training pair yields an Error Surface and that a gradient is computed for each of 

these surfaces in our effort to compute the Average Error Surface gradient.  The Stochastic method does 

not bother to compute the Average Error Surface gradient.  It moves the network solution along based 

on each individual training pair.  It updates the layer’s Weight matrices and Bias vectors based on each 

Error Surface.  This method iterates towards a solution in a zig-zag motion, but it has been shown to 

converge to a solution the fastest for many network topologies.  It is not difficult to implement.  For 

each training pair, skip the average section, or make an average of one, then move the solution forward 

with the Update step. 

The Mini-Batch Method 
The mini-batch method is simply a combination of the two methods mentioned above.  The mini-batch 

method computes the average gradient of a batch of training pairs and takes an iterative step based on 

each mini-batch, progressing from batch to batch until the entire training set is utilized.  The mini-batch 

method itself has a few different implementations.   

The simplest implementation is to work through the  training set in batches and when you run out of 

training pairs go to the top of the list and run through it again. 

It has been suggested that a better method is to randomly sample from the training set.  Whatever the 

mini-batch size is, randomly sample from the training set to fill the mini-batch, compute the mini-batch 

Average Error Surface gradient, advance the solution, then repeat the process. 

Augmented Layer Equation 
There is a more compact way to write the layer equation that is useful for coding a Neural Network 
solver.  Consider the Neural Network Layer equitation written with the augmented variable dimensions 
that we saw above. 
                                                                           (a x 1) = (a x 1)[ (a x b) * (b x 1)  +  (a x 1) ] 

                                                                                Y     =     f      [    W     *     X      +       B     ] 

The technique focuses on how the linear part of the equation, the input to the Activation function, is 

written. 

                                                                              (a x b) * (b x 1)  +  (a x 1)  

                                                                                  W     *     X      +       B  
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Define a matrix G and call it the Augmented Weight matrix and define  a vector H called the Augmented 

input vector.  The Augmented layer equation is given by: 

                                                                     (a x c) * (c x 1)  =  (a x b) * (b x 1)  +  (a x 1)  

                                                                         G     *     H      =     W     *     X       +       B , 

where c = b + 1. 

Note that matrix G has one more column than W; and vector H has one more row than X; and the Bias 

vector is not on the left side of the equation.  To make the above equation true: 

• Set the left side block of G equal to W, and place the Bias vector B into the additional column of 

matrix G. 

• Set the top b rows of H equal to X and set the bottom row of H equal to one. 

 

W B
X

1  

Both the forward pass and back-propagation steps work without modification on the Augmented layer 

equation.  The Augmented layer equation operates on the weight matrix W and Bias vector B together. 

The SimpleNet code base uses the Augmented layer formulation. 

Implementation and Verification 
The mathematics and algorithms discussed in this paper are implemented in the SimpleNet code library.  

SimpleNet is a C++ codebase designed to be easily understandable and extensible.  It utilizes the popular 

Eigen matrix library which provides abstractions for Row vector, Column vector, and Matrix, so the code 

very closely follows the descriptions found in this paper.  The entire library is implemented in one 

header file making it easy to add to a C++ project.  It is object oriented and uses an Interface based 

approach to compose the parts of a Neural Network.  A 

Neural Network layer is represented by the Layer class.  

The things that make one layer different from another are 

the input and output dimensions, and the type of 

Activation function.  The iActive Interface, defined by a 

pure virtual class, provides the method signatures that 

must be implemented by a concrete Activation class.  An 

instance of an Activation class is used by the Layer class to 

apply the Activation function to a Column vector, and to 

provide the Activation function Jacobian matrix.   

The iGetWeights Interface provides the method signatures that must be implemented to create an 

Initialization class.  Initialization classes are used by the Layer class to initialize the Layer’s Weight matrix 

and Bias vector.  The Layer class is instantiated by providing input and output dimensions for the 

G H 
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network layer, and by passing it an iActive interface to an 

instance of an Activation object, and by passing it an 

iGetWeights interface to an Initialization object.   

The Loss layer is represented by classes that implement 

the iLossLayer interface.  

A multi-layer network is created by defining a bi-

directional container, such as a doubly linked list, and 

pushing instances of appropriately sized Layer objects 

onto it.  The Loss layer is implemented as a separate object.  To iterate towards a solution the Layers are 

initialized, and the layer list is navigated from front to back, first by passing the input vector into the first 

(top) layer’s Eval method.  The resulting Column vector is then passed to the Eval method of the next 

layer and so on until the end of the list is reached.  Then the final layer output Column vector is passed 

to the Loss layer object’s Eval method along with the training vector.  The result of this method call is a 

scalar value indicating the measure of error. 

Back-Propagation is accomplished by immediately calling the 

Loss layer’s LossGradient method which returns a Row 

vector.  Then the layer list is navigated from the last to the 

first layer.  The Loss layer Row vector is passed to the last 

layer’s Backprop method which returns a Row vector.  This is 

the inter-layer Row vector.  That Row vector is passed to the 

next layer’s Backprop method and so on until the top layer is 

arrived at.  That process updates the delta matrix of each 

layer.  An update step is taken by navigating through the 

layer list again and calling each layer’s Update method.  

See Appendix 3 for details about the SimpleNet library. 
 
 
 
 

Algorithm and Code Verification 
A simple test is devised to test the method and the implementation of the algorithm described in this 
paper.  The goal of the Back-Propagation method is to compute the gradient of the Loss function with 
respect to the Weight Space parameters.  We can compute and store the gradient of Weight Space at a 
point in Weight Space, then we can compute the gradient using a finite difference approximation and 
compare the results.  A second order approximation was used, given by: 

𝜕𝐿

𝜕𝑊𝑖,𝑗
=

(𝐿(𝑊𝑖,𝑗
+)−𝐿(𝑊𝑖,𝑗

−))

2𝜖
 , 

where  
 

𝑊𝑖,𝑗
+ = 𝑊𝑖,𝑗 + 𝜖 

𝑊𝑖,𝑗
− = 𝑊𝑖,𝑗 − 𝜖  

The finite difference approximation to the gradient of L is computed by perturbing matrix W one 
element at a time.  Each element is perturbed by (+ϵ) and then the value of L is computed, then it is 
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perturbed by (-ϵ) and the value of L is computed again, then the two perturbed values are used to 
compute the derivative of L with respect to element 𝑊𝑖,𝑗. 

To check the accuracy of this algorithm a multi-layer network was created and initialized, but only the 
Weight matrix of the top level was checked.  If the implementation or algorithm in the lower layers is 
wrong or inaccurate that problem will be made evident in the top layer.   

Massive Subtractive Cancellation Errors 
To understand the results of the verification test we must understand what can be expected of the 

results.  The computation was performed in double precision on a 64-bit PC and compiled with 

Microsoft Visual Studio to C++ 17 standard.  MS C++ implements double data types according to the 

IEEE-754 standard.  The IEEE-754 standard will provide from 15 to 17 significant digits (8). 

 Finite difference computation accuracy is a function of the step size (ϵ).  The centered difference 

approximation is 𝑂(𝜖2) .  However, the accuracy of the approximation is also a function of subtractive 

cancellation (ξ) and given by 
𝜉

𝜖⁄  .  If ϵ is too small the subtractive cancellation error will exceed the 

approximation error (9) (10).   

Results 
The Binary Classification problem we saw earlier was used to test the algorithm.  That problem had a 

two-element input vector and a 1 element output vector.  To test the Back-Propagation through hidden 

layers the following network was used. 

Layer Input size Output size Activation function 

1 2 5 Sigmoid 

2 5 9 Sigmoid 

3 9 11 Sigmoid 

4 11 1 Sigmoid 

 

The L2 Loss was used for the Loss layer. 

The Back-Propagation method should provide the true value of the derivative.  The absolute value of the 

difference between the Back-Propagation computed delta matrix (dW) and the finite difference delta 

matrix was computed and the maximum of the difference was recorded.  The following table shows the 

results relative to various values of ϵ. 

ϵ Max Error 

1.0E-3 5.5033E-08 

1.0E-4 5.50505e-10 

1.0E-5 1.21861e-11 

1.0E-6 4.00341e-11 
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1.0E-7 2.92281e-10 

1.0E-8 3.2825e-09 

 

The values in the table above show the expected U-shaped result due to subtractive cancellation.  For 

optimally sized ϵ a result better than 𝑂(𝜖2) is achieved giving a good indication that both the method 

and the implementation are correct. 

Summary and Future work 
A vector-based description of a Feed Forward Neural Network was presented and used to derive the 

Back-Propagation method.  Particular attention was paid to forming the partial derivatives used for 

Back-Propagation, most notably derivatives with respect to the Weight matrix, 
𝜕 𝑍⃗𝑘

 

𝜕 𝐖𝑘
       ⃗

.  This attention to 

detail will be necessary when applied to the development of a Convolutional Neural Network, which I 

plan to write about in another paper.  Algorithms for encoding the mathematics into a computer 

program were presented and the SimpleNet implementation discussed, including a method to test the 

accuracy of the mathematics and the implementation.   
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Appendix 1 – Common Activation Functions 
An Activation function always returns a vector of the same dimension as the input vector. 

Linear Activation Function 
The Linear activation function does not alter the input data, it returns it unaltered.  

Function: 

The base function is given by: 

𝑓(𝑥) = 𝑥 . 

The vector form is given by: 

𝑓(𝑍) = 𝑍 , 

where it is understood that the vector 𝑍 is returned. 

Jacobian: 

The Jacobian of the Linear Activation function is the Identity matrix with rows and columns equal to the 

rows of 𝑍. 

Sigmoid Activation Function 
Function: 

The base function is given by: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

The vector from is given by: 

𝑆(𝑍) =
1

1+𝑒−𝑍  ⃗
 , 

where it is understood that the left side of the equation is applied to 𝑍 element by element. 

The Sigmoid function approaches its minimum and maximum asymptotically. 
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Jacobian: 

𝑄𝑖(𝑍) = 𝑆𝑖(𝑍) (1 − 𝑆𝑖(𝑍)), 

where 𝑖 = 1 𝑡𝑜 𝑁 , where N is the number of elements (rows) in 𝑍. 

The Jacobian matrix is a diagonal matrix with 𝑄 ⃗  on the main diagonal.  In Linear Algebra terms, it is given 

by 𝑰 𝑄 ⃗  , where I is the Identity matrix. 

ReLU Activation Function 
ReLU stands for rectified linear unit. 

Function: 

𝑟𝑙𝑢(𝑥) = {
𝑥 , 𝑥 ≥ 0
0, 𝑥 < 0

 

𝑓(𝑍) = 𝑟𝑙𝑢(𝑍) 

Jacobian: 

The Jacobian matrix is a diagonal matrix with rows and columns equal to the number of rows of 𝑍.  The 

elements on the diagonal are either zero or one and are given by: 

𝐽𝑖𝑖 = {
1,            𝑍𝑖 ≥ 0
0,             𝑍𝑖 < 0

 

Tanh Activation Function 
Function: 

I think most software languages include the Hyperbolic Tangent but to get the value another way it is 

this: 

tanh(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)
 

𝑓(𝑍) = 𝑡𝑎𝑛ℎ(𝑍) 
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Jacobian: 

The Jacobian matrix is a diagonal matrix with rows and columns equal to the number of rows of 𝑍.  The 

elements on the diagonal are given by: 

𝐽𝑖𝑖 = 1 − 𝑇𝑎𝑛ℎ2(𝑍𝑖) 

Softmax Activation Function 
The Softmax Activation function is used for multi-label classification problems.  The output of a multi-

label classification neural network is a vector where each position in the vector is a label.  The binary 

classification problem we saw earlier could be recast as a multi-label classification network.  That 

network would output a two-element vector.  Element one could be the label for blue and element two 

the label for yellow.  The values of a multi-label model output vector represent the probability of the 

label associated with that position being the right classification, but the values are not constrained and 

though the element values represent probability, the input vector is not a proper probability 

distribution.  Softmax transforms the input vector into a probability distribution.   

Function: 

𝑓(𝑍) =
𝑍

∑ 𝑒𝑍𝑖𝑁
𝑖

 

Written another way, 

𝑓𝑗(𝑍) =
𝑍𝑗

∑ 𝑒𝑍𝑖𝑁
𝑖

 

Jacobian: 

The Jacobian of the Softmax Activation is a full matrix. 

Tanh(x) 

x 
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𝐽𝑖,𝑗 = {
𝑓𝑖(𝑍) (1 − 𝑓𝑖(𝑍)) ,        𝑖 = 𝑗

−𝑓𝑖(𝑍)𝑓𝑗(𝑍),                  𝑖 ≠ 𝑗
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Appendix 2 – Common Loss Functions 
 

L2 Loss Function 
The L2 Loss function is the L2 norm, a.k.a. the Euclidean norm.  Sometimes there is a  1 2⁄  in front of the 

Dot product so that the derivative does not have a 2 in front of it.  I think it is 6 of one, a half dozen of 

the other. 

Function: 

𝑓 ( 𝑌 ⃗𝑁
 , 𝑌 ⃗ 

 𝑖 ) = 𝑄 ⃗ 𝑇𝑄 ⃗  , where  𝑄 ⃗ = 𝑌 ⃗𝑁
 − 𝑌 ⃗ 

 𝑖̀ . 

Gradient Vector Derivative: 

(
𝜕𝑓

𝜕 𝑌 ⃗𝑁
 

)
 ⃖             

= 2 𝑄 ⃗ 𝑇 

Cross Entropy Loss Function 
The Cross Entropy Loss function is designed to compare two probability distribution functions.  It does 

not work with element values greater than 1.  It should always be preceded by the SoftMax Activation 

function. 

Function: 

𝑓 ( 𝑌 ⃗𝑁
 , 𝑌 ⃗ 

 𝑖 ) = − ∑ 𝑌 
𝑖

𝑗
̀

𝑚

𝑗

𝑙𝑜𝑔 (max ( 𝑌𝑁
 

𝑗, 𝜖)) 

Where m is the number of rows of the input vector and 𝜖 is a small number to prevent overflow in the 

case that 𝑌𝑁
 

𝑗 is zero.  𝜖 could be set to machine precision but if you want to limit the maximum gradient 

value then you might consider setting it an order of magnitude higher than machine precision. 

Gradient Vector Derivative: 

(
𝜕𝑓

𝜕 𝑌 ⃗𝑁
 

)
 ⃖             

𝑗

= {

𝑌 
𝑖

𝑗
̀

𝑌𝑁
 

𝑗
⁄ ,          𝑌𝑁

 
𝑗 >  𝜖

𝑌 
𝑖

𝑗
̀

𝜖⁄ ,              𝑌𝑁
 

𝑗 ≤  𝜖
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Appendix 3 – SimpleNet  
In this section we will discuss how to use the SimpleNet library to build neural network projects.  The 

library was developed on a Windows 10 computer running Visual Studio Community 2019 with the C++ 

compiler targeting the C++ 14 standard.  The library has also been compiled under the C++ 17 standard.  

There has been no attempt to insure cross-platform compatibility, however, the library only minimally 

accesses the file system to store and read weight matrices.   Adding SimpleNet to a project is well… 

pretty simple, so to avoid complications no “make” file is provided, I’ll go over what you need to do to  

use SimpleNet in your projects. 

Project Setup 
The SimpleNet library is implemented in a header file called “Layer.h”.  To use the library include it in 

your project code.  “Layer.h” includes the Eigen header file.  The Eigen library is also implemented as a 

header file, so no other files need to be included in your projects.   

Add Include Paths to your C++ Project 
To use the SimpleNet library you must download and place the Eigen library somewhere on your file 

system.  In your C++ project add an include path to the Eigen folder.  If you intend to build more than 

one project, you should put the SimpleNet library in its own folder.  If you do that you should add a 

include path to the SimpleNet folder as well.  To do this using Visual Studio, right-click on your project 

and click on Properties in the popup menu.  In the dialog left panel, click on C/C++, then General, then in 

the right panel add the paths to the “Additional Include Directories”. 

Getting the Code 
You can also go to the Blog post that hosts this paper to download the SimpleNet library (A single 

header file), a project example (the one used for the Binary Classification Example, and Eigen version 

3.37.   Here’s the URL: 

http://www.raberfamily.com/scottblog/neural_net_1.htm 

For more details about Eigen and to get the latest version here’s the Eigen URL:  

https://eigen.tuxfamily.org 

Basic use 
The SimpleNet library uses the Eigen library for matrix math.  The SimpleNet library defines these three 

important object types: 

Matrix This is a double precision Eigen Matrix class. 

Creation examples: 
Matrix m(100,100); 

Matrix m; 

m.resize(10,10); 

Matrix n; 

n = m; 
 

ColVector This is a double precision Eigen Vector class.  At its base it is a one column matrix. 

https://eigen.tuxfamily.org/
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ColVector x(2); 

x(0)=1.0; 

x(1)=2.0; 

ColVector b; 

b = x; 

ColVector y; 

y.resize(10); 

RowVector This is a double precision Eigen RowVector class.  At its base it is a one row matrix. 

RowVector x(2); 

x(0)=1.0; 

x(1)=2.0; 

RowVector b; 

b = x; 

RowVector y; 

y.resize(10); 

 

The above object types are used throughout the SimpleNet library and are needed in your program to 

interact with the library. 

The Layer Class 

Constructor 
Layer(int input_size, int output_size, iActive* _pActive, shared_ptr<iGetWeights> _pInit ) 

Parameter Description 

input_size This parameter specifies the number of elements in the input vector to the layer.  If the 

layer is the top layer, then this parameter should be set to the size of the model input 

vector. 

output_size This parameter specifies the number of elements in the the output vector of the layer.  

If this is the last layer, then this size should be set to the output size of the model. 

_pActive This is a pointer to an iActive interface, which is just a C++ class pointer.  Use new to 

create a pointer to an implementation class.  Don’t hold on to this pointer, there is no 

fancy reference counting, the Layer class expects to be the sole owner of the interface 

and will call delete on it during Layer class destruction. 

 Use one of the following Activation classes or implement your own. 

 

 

 

actSigmoid 

actTanh 

actLinear 

actReLU 

actLeakyReLU 

actSoftMax 
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_pInit This is a smart pointer to an iGetWeights interface.  The Layer class will use this pointer 

in the constructor then discard it. 

Use one of the following classes or implement your own. 
 Class Description 

IWeightsToConstants Initialize network weight and bias vector to 

constants. 

IWeightsToRandom Initialize network weights to random values in 

a range. 

IWeightsToNormDist Initialize network weights to random values 

utilizing the Xavier or Kanning methods to 

calculate variance. 

IOWeightsBinaryFile Initialize network to stored weights.  This 

implementation class also implements the 

iPutWeights interface and should be used to 

create the weight files. 

 

Example 1 

This example creates a pointer to a Layer class.  This instance takes a 2-element input vector and 

outputs a 5-element vector.  It uses the Sigmoid activation functions and is randomly initialized.  The 

weight class instantiation is a bit cumbersome. 

Layer* lyr = new Layer(2, 5,  

new actSigmoid(),make_shared<IWeightsToNormDist>(IWeightsToNormDist::Xavier,1) ); 

 

Example 2 

This example shows how to use the Layer class.  The library does support a graph (connection) model, 

you supply that in your code.  Fully Connected networks are easy to put together because one layer calls 

the next.  In the example below a two-layer network is setup.  The network takes a 2-element input 

vector and outputs a 1-element vector. 

typedef vector< shared_ptr<Layer> > layer_list; 

layer_list LayerList;   

// a1 specifies the weights (nodes) in a hidden layer. 

int a1 = 9; 

LayerList.push_back( 

make_shared<Layer>(2, a1, new actSigmoid(), 

    make_shared<IWeightsToNormDist>(IWeightsToNormDist::Xavier,1)) 

); 

 

LayerList.push_back( 

make_shared<Layer>(a1, 1, new actSigmoid(), 

make_shared<IWeightsToNormDist>(IWeightsToNormDist::Xavier,1)) 

); 
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Eval 
ColVector Eval(const ColVector& _x)  

Eval takes a ColVector as input and outputs a ColVector not necessarily of the same size.  It is used for 

the forward pass through the network. 

Example: 

Given initialized ColVector X for input to the network, and using the LayerList STL Vector from the 

example above, apply the network.  On completion X will be resized and contain the result of the 

network.  During training the output of the network should be passed to the Loss object along with the 

training label (vector). 

         for (layer_list::iterator l = LayerList.begin(); 

            l != LayerList.end(); 

            l++) { 

            X = (*l)->Eval(X); 

         } 

         loss->Eval(X, Y); 

 

There is a fancy way to do this using modern C++ that is much more readable. 

         for (const auto& lit : LayerList) { 

            X = lit->Eval(X); 

         } 

         loss->Eval(X, Y); 

 

BackProp 
RowVector BackProp(const RowVector& child_grad, bool want_layer_grad = true ) 

The method BackProp is used for the backward pass through the network.  After a 

forward pass, call a Loss function to initialize the Back-Propagation inter-layer Row 

vector, then pass that into the BackProp method of the last (bottom) Layer and 

iterate through the network from the bottom to the top. 

Example: 

During network training a code block similar to that below should be run directly after a forward pass 

through the network. 

         RowVector g = loss->LossGradient(); 

         for (layer_list::reverse_iterator riter = LayerList.rbegin(); 

            riter != LayerList.rend(); 

            riter++) { 

            g = (*riter)->BackProp(g); 

         } 

 

Update 
void Update(double eta) 
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Call Update to apply the delta matrix, 𝛥 𝐖𝑘
 ̅̅ ̅̅ ̅̅ ̅ , to the current weight matrix and reset the average counter 

to zero.  You can call Update after processing a full training batch, a mini-batch, or after each training 

label (stochastic descent). 

Example: 

 

      double eta = 0.75; 

      for (const auto& lit : LayerList) { 

         lit->Update(eta); 

      } 

 

Save 
void Save(shared_ptr<iPutWeights> _pOut) 

Use the Save method to save the layer weights to file so that they can be loaded later and used or 

further updated.  The current methods of saving the layer weights results in a separate file for each 

layer.  Keep these files together to load them back into the network.  This is admittedly and purposefully 

an unsophisticated method of saving the network parameters.  This simple method also lends itself well 

to outputting the weight matrices to CSV file for display or reading by other applications.   

Use one of the storage class or build your own by implementing the iPutWeights interface. 

 

 

 

 

 

Example 1: 

A unique file name needs to be generated for each layer.  One way to do this is to enumerate the file 

name.  In the following example each layer is save to both binary and CSV format.  The string variable 

path has been initialized to the file path where the files should be written. 

   int l = 0; 

   for (const auto& lit : LayerList) { 

      l++; 

      string layer = to_string(l); 

      lit->Save(make_shared<OWeightsCSVFile>(path, "parallel." + layer )); 

      lit->Save(make_shared<IOWeightsBinaryFile>(path,"parallel." + layer )); 

   } 
 

Example 2: 

This example demonstrates how to restore a network weight from previously stored weights.  In the 

example below the network construction is setup with an inline conditional statement.  If restore is set 

to true then the IOWeightsBinaryFile class will be used to restore the layer weights from file. 

   std::string model_name = "FC32"; 

Class Description 

IOWeightsBinaryFile Use this class to write the layer matrices to 

file for later recovery. 

OWeightsCSVFile Use this class to write the layer matrices to 

CSV file. 
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   LayerList.clear(); 

   bool restore = true; 

 

   // FC Layer 1 ----------------------------------------- 

   // Type: FC Layer 

   int size_in  = MNISTReader::DIM; 

   int size_out = 32; 

 

   int l = 1; // Layer counter 

   LayerList.push_back(make_shared<Layer>(size_in, size_out, new actReLU(size_out), 

              restore ? dynamic_pointer_cast<iGetWeights>(  

make_shared<IOWeightsBinaryFile>(path, model_name + "." + to_string(l)) 

) :  

dynamic_pointer_cast<iGetWeights>(  

make_shared<IWeightsToNormDist>(IWeightsToNormDist::Kanning, 1)))  

); 

   l++; 

 

   // FC Layer 2 ----------------------------------------- 

   // Type: FC Layer 

   size_in  = size_out; 

   size_out = 10; 

   LayerList.push_back(make_shared<Layer>(size_in, size_out, new actSoftMax(size_out), 

                 restore ? dynamic_pointer_cast<iGetWeights>(  

make_shared<IOWeightsBinaryFile>(path, model_name + "." + to_string(l)) 

) : 

dynamic_pointer_cast<iGetWeights>(  

make_shared<IWeightsToNormDist>(IWeightsToNormDist::Xavier, 1)))  

); 

   l++; 
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